
DecTree v1.0 - Chemistry speedup in reactive transport simulations:
purely data-driven and physics-based surrogates
Marco De Lucia1 and Michael Kühn1,2

1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
2University of Potsdam, Institute of Geosciences, Hydrogeology, Potsdam, Germany

Correspondence: M. De Lucia (delucia@gfz-potsdam.de).

Abstract. The computational costs associated with coupled reactive transport simulations are mostly due to the chemical

subsystem: replacing it with a pre-trained statistical surrogate is a promising strategy to achieve decisive speedups at the price

of small accuracy losses and thus to extend the scale of problems which can be handled. We introduce a hierarchical coupling

scheme in which “full physics”, equation-based geochemical simulations are partially replaced by surrogates. Errors on mass5

balance resulting from multivariate surrogate predictions effectively assess the accuracy of multivariate regressions at runtime:

inaccurate surrogate predictions are rejected and the more expensive equation-based simulations are run instead. Gradient

boosting regressors such as xgboost, not requiring data standardization and being able to handle Tweedie distributions, proved

to be a suitable emulator. Finally, we devise a surrogate approach based on geochemical knowledge, which overcomes the

issue of robustness when encountering previously unseen data, and which can serve as basis for further development of hybrid10

physics-AI modelling.

1 Introduction

Coupled reactive transport simulations (Steefel et al., 2005, 2015) are very expensive, effectively hampering their wide ap-

plications. While hydrodynamic simulations on finely resolved spatial discretisations, containing millions of grid elements,

are routinely run on common workstations, the order of magnitude of the computationally affordable reactive transport sim-15

ulations on the same hardware decreases by a factor of ten to a hundred as soon as chemical reactions are coupled in (De

Lucia et al., 2015; Jatnieks et al., 2016; De Lucia et al., 2017; Leal et al., 2020; Prasianakis et al., 2020). This usually requires

oversimplifications of the subsurface domain, reduced to 2D or very coarse 3D, and of the geochemical complexity as well.

In the classical operator splitting such as Sequential Non-Iterative Approach (SNIA), the three interacting physical pro-

cesses hydrodynamic flow, solutes transport and chemical interactions between solute species and rock forming minerals are20

solved sequentially. Chemistry usually represents the bottleneck for coupled simulations with up to 90% of computational

time (De Lucia and Kühn, 2013; De Lucia et al., 2015; Leal et al., 2020). The numerical model for geochemical speciation

and reactions requires in general the integration of one stiff differential-algebraic system of equations per grid element per
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simulation time step. Parallelisation is thus required to tackle large spatial discretisations, which is why many modern codes

are developed to run on high performance computing (HPC) clusters with many thousand of CPUs. However, parallelisation25

alone still is not sufficient to ensure numerical convergence of the simulations, a problem routinely encountered by many

practitioners. Furthermore, large uncertainties affect the phenomenological model itself (i.e., reaction kinetics spanning over

orders of magnitude; consistent activity model for concentrated solutions usually encountered in the subsurface, . . . ) and even

larger concern the parametrisation of the subsurface, regarding the spatial heterogeneity of rocks, which is mostly unknown

and hence often disregarded (De Lucia et al., 2011). It thus may appear unjustified to allocate large computational resources to30

solve very expensive, yet still actually oversimplified or uncertain problems. Removing the computational cost associated with

reactive transport modelling is thus of paramount importance to ensure its wide application on a range of otherwise practically

unfeasible problems (Prommer et al., 2019).

The much desired speedup of this class of numerical models has been the focus of intensive research in the last few years.

Among the proposed solutions, Jatnieks et al. (2016) suggests to replace the “full physics” numerical models of the geochem-35

ical subsystem with emulators or surrogates, employed at runtime during the coupled simulations. A surrogate in this sense is

a statistical multivariate regressors which has to be trained in advance on a set of pre-calculated “full physics” solutions of the

geochemical model at hand, spanning the whole parameter range expected for the simulations. Since the regressors are much

quicker to compute than the setup and integration of a differential algebraic system of equations (DAE), this promises a signif-

icant speedup and has thus found resonance in the scientific community (e.g., De Lucia et al., 2017; Laloy and Jacques, 2019;40

Guérillot and Bruyelle, 2020). However, all approximations and especially purely data-driven surrogates introduce accuracy

losses into the coupled simulations. These must be kept low in order to generate meaningful simulation results. Ultimately,

replacing a fully fledged geochemical simulator with surrogate equals to trading computational time for accuracy of the sim-

ulations. Due to the non-linear nature of geochemical sub-processes, even small errors in surrogate predictions propagate in

successive iterations so that diverging trajectories for the coupled models originate from only few time-steps, leading to un-45

physical results. Mass and charge imbalances, i.e., “creation” of matter, happen to be the most common source of unphysicality

in our early tests. It is thus of paramount importance to obtain highly accurate surrogates, which in turn may require very large

and densely sampled training datasets and training times.

Any regression algorithm can be employed to replace the “full physics” equation-based geochemical model. The thriving

developments in data science and machine learning in the recent years have produced many different and efficiently imple-50

mented regressors readily available and usable in high-level programming languages such as python or R. Among the most

known ones there are gaussian processes, support vector machines, artificial neural networks and decision-tree based algo-

rithms such as random forest or gradient boosting. Most of these algorithms are “black boxes”, which non-linearly relate many

output variables to many input variables. Their overall accuracy can be statistically assessed by measuring their performances

on the training dataset or on a subset of the available training data left out for the specific purpose of testing the models. In any55

case these training and/or test datasets must be obtained beforehands computing an appropriate number of points with the “full

physics” model. Geochemistry is usually largely multivariate, meaning that many input and many output variables are passed

to and from the geochemical subsystem at each time step. In general, different regressors may capture each output variable in
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better fashion depending on many factors (e.g., the problem at hand, where variables display different non-linear behaviors;

the sampling density of training dataset, which may be biased). For this reason, we argue that the most sensible choice for a60

surrogate modelling framework is that of multiple multivariate regression: one multivariate regressor - making use of many

or all inputs as predictors - is trained independently for each distinct output variable, while the choice of regressor may vary

from variable to variable. With algorithms such as Artificial Neural Networks (ANN) it is possible to train one single network,

and hence one single surrogate, for all variables at once. However, ANN usually require long CPU times for training and quite

large training datasets.65

In praxis, the CPU-time, the user interactions and the overall skills required for optimally training complex regressors cannot

be underestimated and may prove overwhelming for a geoscientist. The whole process of hyperparameter tuning, required by

most advanced machine learning algorithms, while being an active area of development and research, is still hardly fully

automatable.

This work showcases and analyses two different approaches for surrogate geochemical modelling in reactive transport sim-70

ulations. The first is completely data-driven, disregarding any possible knowledge about the ongoing process. In the second

approach, we derive a surrogate which exploits the actual equations solved by the full physics representation of chemistry. Both

are applied and evaluated on the same 1D benchmark implemented in a simple reactive transport framework. Our implemen-

tation of coupled reactive transport includes a hierarchical submodel coupling strategy, which is advantageous when different

accuracy levels for the predictions of one sub-process are available.75

2 Methods: simulation environment and benchmark problem

The versioned R code used for DecTree v.1.0 model setup and evaluation is referenced in section “code availability”. It is based

on version v0.0.4 of the RedModRphree package for the R environment (R Core Team, 2020), which is also referenced in

section “code availability”. It makes use of the geochemical simulator PHREEQC (Appelo et al., 2013). RedModRphree

supersedes the in-house developed R-PHREEQC interface Rphree (https://rphree.r-forge.r-project.org/, De Lucia and Kühn,80

2013).

The benchmarks and the performance measurements refer to computations run on a recent desktop workstation equipped

with Intel Xeon W-2133 CPU with clock at 3.60 GHz and DDR4 RAM at 2.666 GHz under Linux kernel 5.9.14 and R version

4.0.3. If not otherwise specified, only one CPU core is employed for all computational tasks. Since chemistry is inherently an

embarassing parallel task, the speedup achieved on a single CPU as in this work will transfer - given large enough simulation85

grids making up for the overhead - on parallel computations.

2.1 Numerical simulation of flow and transport

We consider a stationary, fully-saturated, incompressible, isothermal 1D Darcy flow in a homogeneous medium. Transport

is restricted to pure advection and the feedback of mineral precipitation and dissolution on porosity and permeability is also

disregarded; the fluid density is also considered constant. Advection is numerically computed via a forward Euler explicit90
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resolution scheme:

Ci(x,t+ 1) = Ci(x,t)−u ·∆ t
Ci(x,t)−Ci(x− 1, t)

∆x
(1)

where u is the module of Darcy velocity, Ci(x,t) the volumetric concentration (molality) of the i-th solute species at the

point x and time t, and ∆x the size of a grid element. For this scheme, the Courant-Friedrichs-Lewy stability condition (CFL)

imposes that the Courant number ν be less than or equal to 1:95

ν =
u ·∆ t

∆x
≤ 1 (2)

For Courant numbers less than 1, numerical dispersion arises; the scheme is unstable for ν > 1. The only both stable and precise

solution for advection is with ν = 1. Thus, the CFL condition is very limiting in ∆ t: a factor two refinement in the spatial

discretisation corresponds to a factor two decrease in ∆ t, thus obtaining double required iterations. Note that equation 1 is not

written in terms of porosity, so that effectively the Darcy velocity is assumed equal to the fluid flux or, alternatively, porosity is100

equal to unity. This assumption does not have any impact on the calculations besides the initial scaling of the system.

The implemented advection relies on transport of total elemental concentrations instead of the actual dissolved species, since

all solutes are subjected to the very same advection equation (Parkhurst and Wissmeier, 2015). Special attention needs to be

payed to pH which is defined in terms of activity of protons:

pH =− log10

(
[H+]

)
105

and is hence not additive. Assuming that the activity coefficient for protons is constant throughout the simulation, the activity

[H+] can be actually transported instead of pH. Charge imbalance and redox potential (pe) can be safely disregarded for

this redox-insensitive model, with absolutely insignificant errors when compared to the same problem simulated, e.g., with

PHREEQC’s ADVECTION keyword (not shown).

2.2 The chemical benchmark110

The chemical benchmark used throughout this work is inspired by Engesgaard and Kipp (1992) and is well known, with many

variants, in the reactive transport community (e.g., Shao et al., 2009; Leal et al., 2020). It was chosen since it has been studied

by many different authors and it is challenging enough from a computational point of view.

At the inlet of a column, conventionally on the left side in the pictures throughout this work, a 0.001 molal magnesium

chloride (MgCl2) solution is injected into a porous medium whose initial solution is at thermodynamic equilibrium with calcite.115

With the movement of the reactive front, calcite starts to dissolve and dolomite is transiently precipitated. Kinetic control is

imposed on all mineral reactions following a Lasaga rate expression from Palandri and Kharaka (2004), limited to only neutral

and H+ mechanisms (parameters are summarised in Table 1) and constant reactive surfaces, hence independent on the actual

amounts of minerals. Precipitation rate - relevant only for dolomite - is set equal to the rate of dissolution. Temperature is set

for simplicity at constant 25°C in disregard to actual physical meaningfulness of the model concerning dolomite precipitation120

(Möller and De Lucia, 2020). Detailed initial and boundary conditions are summarized in Table 2. To achieve a complete
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Table 1. Parameters for kinetic control for dissolution and precipitation of calcite and dolomite. k is given in molm−2 s−1, Ea in kJmol−1

and reactive surface in m2/kgH2O.

Mineral H+ mechanism Neutral mechanism

log k Ea H+ order log k Ea reactive surface

calcite -0.30 14.4 1 -5.81 23.5 3.20

dolomite -3.19 36.1 0.5 -7.53 52.2 0.32

Table 2. Initial (IC) and boundary (BC) conditions for the benchmark problem.

C Ca Cl Mg pH calcite dolomite

molal molal molal molal - mol mol

IC 1.2279 · 10−4 1.2279 · 10−4 0.00 0.00 9.91 2.07 · 10−3 0.00

BC 0.00 0.00 0.2 · 10−2 0.1 · 10−2 7

description of the chemical system at any time, seven input variables are required: pH, C, Ca, Mg, Cl, calcite and dolomite -

those can be considered, with an abuse of language, state variables, in the sense that they constitute the necessary and sufficient

inputs of the geochemical subsystem, and all reactions only depend on them. The outcome of the “full physics” calculations

is completely defined (at least with the simplifications discussed above) by four distinct quantities: the amounts of reaction125

affecting the two minerals calcite (i) and dolomite (ii) in the given time step, from which the changes in solutes Ca, Mg and

C can be backcalculated; Cl (iii), which is actually non-reactive; and pH (iv). In a completely process-agnostic, data-driven

framework, however, the relationships between minerals and aqueous concentrations are disregarded, and the output of the

chemical subsystem is expressed solely in terms of the input variables.

2.3 Reference simulations and training data130

For the remainder of this work, the geochemical benchmark described above is solved on a 1D column of length 0.5 m, with

constant fluid velocity of u= 9.375 · 10−6 m/s. The domain is discretised with grid refinements ranging between 50 and 500

grid elements. Higher refinements have a double effect: on one side larger grids obviously increase the overall computational

load, and in particular for chemistry; on the other side, given the restriction of the implemented forward Euler explicit ad-

vection scheme, the time stepping required for the coupled simulations in order to be free of numerical dispersion decreases135

accordingly. Smaller time steps decrease the computational load for geochemistry for each iteration, since they require shorter

time integrations, but also require more coupled iterations to reach the same simulation time. More iterations mean also that

there are more chances for errors introduced by surrogates to further propagate into the simulations in both space and time. In

presence of significant overhead due to, e.g., data passing between different softwares or the setup of geochemical simulations,
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the advantage due to shorter time steps vanishes. However, these aspects become more relevant in the context of parallelisation140

of geochemistry and are not addressed in the present work.

All coupled simulations, both reference (full physics) and with surrogates, are run with constant time step either honouring

the CFL condition with ν = 1, and thus free of numerical dispersion, or, when assessing how the speedup scales with larger

grids, a fixed time step small enough for the CFL condition (eq. 2) to be satisfied for every discretisation. As previously noted,

the resulting simulations will be affected by grid-dependent numerical dispersion, which we do not account for in the present145

work. This makes the results incomparable in terms of transport across grids. However, since the focus is on the acceleration

of geochemistry through pre-computed surrogates, this is an acceptable simplification.

The comparison between the reference simulations, obtained by coupling of transport with the PHREEQC simulator, and

those obtained with surrogates is based on an error measure composed as the geometric mean of the relative RMSEs of each

variable i, using the variable’s maximum at a given time step as norm:150

Errort = exp





1
m

m∑

i

ln

√
1
n

∑n
j (refi,j − predi,j)2

maxt(predi)



 (3)

wherem is the number of variables to compare, n the grid dimension and t the particular time step where the error is computed.

In this work the datasets used for training the surrogates are obtained directly by storing all calls to the full physics simulator

and its responses in the reference coupled reactive transport simulations, possibly limited to a given simulation time. This way

of proceeding is considered more practical than, e.g., an a priori sampling of a given parameter space, where the bounds of155

the parameter space are defined by the ranges of the input/output variables occuring in the reference coupled simulations. This

strategy mimics the problem of wanting to train a surrogates directly at runtime during the coupled simulations. Furthermore,

an a priori, statistical sampling of parameter space, in absence of restrictions based on the physical relationships between the

variables, would include unphysical and irrelevant input combinations. By employing only the input/outputs tables actually

required by the full physics simulations, this issue is automatically solved; however, the resulting datasets will be in general160

skewed, multimodal and highly inhomogeneously distributed within the parameter space, with highly dense samples in some

regions and even larger empty ones.

2.4 Hierarchical coupling of chemistry

In this work we consider only a Sequential Non-Iterative Approach (SNIA) coupling scheme, meaning that the sub-processes

flow, transport and chemistry are solved numerically one after another before advancing to the next simulation step. For sake165

of simplicity, we let the CFL condition (2) for advection dictate the allowable time step for the coupled simulations.

Replacing the time-consuming, equation-based numerical simulator for geochemistry with an approximated but quick surro-

gate introduces inaccuracies into the coupled simulations. These may quickly propagate in space and time during the coupled

simulations and lead to ultimatively incongruent and unusable results.
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A way to mitigate error propagation, and thus to reduce the accuracy required of the surrogates, is represented by a hierarchy170

of models used to compute chemistry at each time step during the coupled simulations. The idea is to first ask the surrogate for

predictions, then identify unplausible or unphysical ones, and finally run the full physics chemical simulator for the rejected

ones. This way, the surrogate can be tuned to capture with good accuracy the bulk of the training data, and no particular

attention needs to be payed to the most difficult “corner cases”. For the highly non-linear systems usually encountered in

geochemistry, this is of great advantage. In practice, however, there still is need to have a reliable and cheap error estimation175

of surrogate predictions at runtime.

It is important to understand that the criteria employed to accept or reject the surrogate predictions depend strictly on

the architecture of the multivariate surrogate and on the actual regression method used. Methods such as kriging offer error

models, based, e.g., on the distance of the estimated point from the nearest training data. However, in the general case, any

error estimation requires first the training and then the evaluation at runtime of a second “hidden” model. Both steps can be180

time-consuming; furthermore, in the general case one can only guarantee that the error is expected - in a probabilistic sense -

to be lower than a given threshold.

In a completely data-driven surrogate approach, where each of the output variables is independently approximated by a

different multivariate regressor, checking mass conservation is a very inexpensive way to estimate the reliability of a given

surrogate prediction, since it only requires the evaluation of linear combinations across predictors and predictions. Other con-185

straints may be added, suited to the chemical problem at hand, such as charge balance. However we only use mass balance

in the present work. Figure 1 illustrates this simple hierarchical coupling schematically. For the chemical benchmark of sec-

Figure 1. Schematic view of hierarchical sequential non iterative coupling. The decision wether to accept or not the predictions of a multiple

multivariate surrogate is based on computing the mass balances for the three elements forming dolomite and calcite before and after reaction,

and computing their mean absolute error. If this error exceeds a given threshold, the more expensive equation based geochemical simulator

is run instead.

tion 2.2, three mass balance equations can be written, one for each element C, Ca and Mg, accounting for the stoichiometry of

the minerals’ brute formulas. If a surrogate prediction exceeds a given, predetermined, tolerance on the Mean Absolute Error

of the balance equations, that particular prediction is rejected and a more expensive full physics simulation is run instead.190

This approach moderates the need for extremely accurate regressions, especially in instances of non-linear behaviour of the

chemical models, for example when a mineral precipitates for the first time or when it is completely depleted, which are hard

things for regressors to capture. However, the number of rejected simulations must be low to produce relevant speedups; it is
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effectively a trade-off between the accuracy of the surrogates (and efforts and time which goes into it) and the speedup achieved

in coupled simulations.195

3 Fully data-driven approach

The first approach is a completely general one, fully data-driven and thus process-agnostic: it can be employed for any kind of

numerical model or process which can be expressed in form of input and output tables. In our case, the tables produced by the

geochemical sub-process during the reference coupled simulations are used to train seven multiple multivariate regressors, one

for each output.200

The reference simulations, and hence the dataset for training the surrogate, are fully coupled simulations on grid 50, 100

and 200 with a fixed time step of 210 s, run until 33600 s or else 161 total coupling iterations. As previously noted, these

simulations are then not comparable among themselves due to significant numerical dispersion; however, from the point of

view of geochemical processes, this strategy has the advantage of spreading the “perturbations” due to transport of the results

of geochemistry in the previous time step. Instead of the usual random split of the dataset in train and test subsets, costumary205

in the machine learning community, we retained only the data resulting from the first 101 iterations for training the surrogates,

and evaluated the resulting reactive transport simulations until iteration 161, where the geochemical surrogate is faced with 60

iterations on unseen or “out of sample” geochemical data. The training dataset comprises tables with 13959 unique rows or

input combinations. All simulations, the reference and with surrogates, are run on a single CPU core.

The choice of the regressor for each output is actually arbitrary, and nothing forbids to have different regressors for each210

variables, or even different regressors in different regions of parameter space of each variable. Without going into details on all

kinds of algorithms that we tested, we found that decision-tree based methods such as Random Forest and their recent gradient

boosting evolutions appear the most flexible and successful for our purposes. Their edge can in our opinion be resumed by:

(1) implicit feature selection by construction, meaning that the algorithm automatically recognizes which input variables are

most important for the estimation of the output; (2) no need for standardisation of both inputs and outputs; (3) ability to215

deal with any probability distributions; (4) fairly quick to train with sensible hyperparameter defaults; (5) extremely efficient

implementations available.

The points number (2)-(4) cannot be overlooked. Data normalisation or standardisation techniques, also called “preprocess-

ing” in machine learning lingo, are redundant with decision-tree based algorithms, whereas they have a significant impact on

results and training efficiency with other regressors such as Support Vector Machines and Artificial Neural Networks. The220

distributions displayed by the variables in the geochemical data are extremely variable and cannot be assumed uniform, gaus-

sian or lognormal in general. We found out that the Tweedie distribution is suited to reproduce many of the variables in the

training dataset. The Tweedie distribution is a special case of exponential dispersion models introduced by Tweedie (1984) and

thoroughly described by Jørgensen (1987), which finds application in many actuarial and signal processing processes (Hassine

et al., 2017). A Random Variable Y is a Tweedie distribution of parameter p if Y ≥ 0, E[Y ] = µ and V ar(Y ) = σ2µp. This225

means that it is a family depending on p: gaussian if p= 0, Poisson if p= 1, gamma if p= 2 and inverse gaussian if p= 3. The
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interesting case, which is normally referred to when using the term “Tweedie”, is when 1≤ p≤ 2. This distribution represents

positive variables with positive mass at zero: meaning that this distribution preserves the “physical meaning” of zero. It’s intu-

itively an important property when modelling solute concentrations and mineral abundances: the geochemical system solved

by the full physics simulator is radically different when, e.g., a mineral is present or not.230

Extreme gradient boosting xgboost (Chen and Guestrin, 2016) is a decision-tree based algorithm which enjoys an enor-

mous success in the machine learning community in recent years. It has out-of-the-box the capability to perform regression of

Tweedie variables and it is extremely efficient in both training and prediction. Using the target Tweedie regression with fixed

p= 1.2, max tree depth of 20, the default η = 0.3 and 1000 boosting iterations with early stopping at 50, all results in the dataset

are reproduced with great accuracy and the training itself takes around 20 seconds for all seven outputs on our workstation,235

using four cores. Contrary to the expectaction, the accuracy of the predictions is largely enhanced if the labels (i.e., the output

table) are scaled before training. We used the max value of each label divided by 1·10−5 as scale. The default evaluation metric

when performing Tweedie regression is the Root Mean Squared Log Error:

rmsle =

√
1
N

[ln(pred+ 1)− ln(label+ 1)]2 (4)

In the previous section it was claimed that in the framework of hierarchical coupling there is no practical need to further240

refine the regressions. This could be achieved by hyperparameter tuning and by using a different and more adapted probability

distribution for each label including proper fitting of parameter p for the Tweedie variables. While this would be of course

beneficial, we proceed now by plugging such a rough surrogate into the reactive transport simulations. The coupled simulations

with surrogates are performed on the three grids for 161 iterations, setting the tolerance on mass balance to 10−5, 10−6 and

only relying on the surrogate, meaning with no call to PHREEQC even if a large mass balance error is detected.245

In Figure 2 are exemplarily displayed the variables profiles for grid 100 and tolerance 10−6 at two different time steps,

iteration 101, which is the last one within the training dataset, and at the end of the simulation time, after 60 coupling iterations

in “unseen territory” for the surrogates. The accuracy of the surrogate simulations is excellent for the 101st iteration, but by

iteration 161, while still acceptable, some discrepancies start to show. The number of rejected surrogate responses at each time

step does not remain constant during the simulations, but increases steadily. An overview of all the simulations is given in250

Figure 3 (top frame). The more stringent mass balance tolerance of 10−6 (solid lines) rejects obviously many more simulations

which goes hand in hand with the excellent accuracy of the results (Figure 3, bottom panel; error measured with formula

of equation 3 excluding pH). It was expected, and it is demonstrated by the evaluation, that starting with the first “out of

sample” time step the accuracy of the surrogates significantly drops, which triggers a steep increase of rejected predictions and

conversely of calls to PHREEQC. The hierarchical coupling ensures that the errors in the surrogate simulations do not follow255

the same steep increase, but from this moment on there is a loss of computational efficiency, visible in the simulations with

tolerance 10−6, which makes the whole surrogate predictions actually useless in terms of speedup even before making them

so inaccurate to be useless. It is also apparent from the error panel in Figure 3 (bottom) that errors introduced in the coupled

simulations at early time steps propagate through the rest of the simulations, so that the overall discrepancy between reference

and surrogate simulations also steadily increases. Note that this “diverging behavior” also tends to bring the geochemistry260
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Grid 100, iteration 101 (last in sample)

Reference
Surrogate

Grid 100, iteration 161 (out of sample)

C
Ca
Mg
Calcite
Dolomite
pH

Figure 2. Profiles of total concentrations, pH and minerals for reference and hierarchical coupling 1D simulations with tolerance on mass

balance error set to 10−6, for grid 100. The top row displays the last in sample time step, the bottom the last simulated time step, after 60

iterations for which the surrogate was out of sample.

“out of sample”, in the sense of seen vs. unseen geochemical data, since the training data only comprises “physical” input

combinations but, due to the introduced inaccuracies, we are asking the surrogate more and more predictions based on slightly

“unphysical” input combinations. Having highly accurate surrogates, hence, would be beneficial also in this regard.

It is difficult to discriminate “a priori” between acceptable and unacceptable simulation results based on a threshold of an

error measure such as that of eq. 3, which can be roughly interpreted as “mean percentage error”. This is also a point where in265

our opinion further research is needed. Relying on the visualisation of the surrogate simulation results and reference, we can

summarize that the tolerance on mass balance of 10−6 (solid lines in Figure 3) produces accurate coupled simulations, excellent

accuracy within the time steps of the training data and good accuracy after the 60 out of sample iterations. The tolerance of

10−5 as well as the simulations based solely on surrogates produce acceptable accuracy in sample but unusable and rapidly

diverging results out of sample. For the given chemical problem, the 10−6 tolerance on mass balance could be relaxed, whereas270

the 10−5 is too optimistic. The optimal value, at least for the considered time steps, lies between these two values.

The overall speedup - in terms of total wall clock time of the coupled simulations, thus including also CPU time used

for advection and all the overheads, although both much less computationally intensive than chemistry, and therefore termed

pseudo speedup - with respect to the reference simulations is summarized in Figure 4. Here the whole 161 iterations, also all

the out of sample ones are considered. Pseudo speedup increases with grid size as expected. The accurate 10−6 simulations275

are not accelerated on grid 50 (pseudo speedup of 0.86), but they reach 1.33 on the 200 grid. The surrogate-only speedup
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Figure 3. Purely data-driven approach: evaluation of calls to full physics simulator for the runs with hierarchical coupling for the three

discretisations à 50, 100 and 200 elements, and of overall discrepancy between surrogate simulations and reference. When the surrogate

enters the region of “unseen data”, its accuracy degrades significantly, which causes loss of efficiency rather than accuracy.
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Figure 4. Overall pseudo speedup (total wall clock time) after 161 iterations for coupled simulations with hierarchical coupling and only

relying on the surrogate.

starts at around 2.6 for the 50 grid and reaches 4.2 for the 200 grid, and that can be taken as a measure of achievable speedup,

in projection, by using extremely accurate surrogates. Considering only the first 101 iterations, the 10−6 simulations would

achieve speedup slightly larger than one already on the 50 elements grid, and be well over 2 on the 200 grid. Extrapolating

to grids with 105 or 106 elements, speedups in the order of 25-50 are achievable for this chemical problem. The speedup will280

arguably increase even further in presence of more complex chemistry.
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4 Surrogates based on geochemical knowledge

The above presented fully data-driven approach disregards any domain knowledge or known physical relationships between

variables besides those which are picked up automatically by the multivariate algorithms operating on the input/outputs in the

training data.285

We start this approach by considering the actual “true” degrees of freedom for the geochemical problem, which is fully

described by seven inputs and four outputs: ∆calcite, ∆dolomite, Cl and pH. This means that we will have to calculate back

the changes in concentrations for C, Ca and Mg, risking a quicker propagation of errors if the reaction rates of the minerals are

incorrectly predicted.

The reference simulations for this part are run with ν = 1 and thus without numerical dispersion on four different grids: 50,290

100, 200 and 500 elements respectively. This implies that the simulation on grid 500 has ten times more coupling iterations

than the 50 grid, or in other terms, that the allowable time step in grid 500 is a tenth of that for grid 50.

A common way to facilitate the task of the regressors by “injecting” physical knowledge into the learning task of the

algorithms is to perform feature engineering: this simply means computing new variables defined by non-linear functions of

the original ones, which may give further insights regarding multivariate dependencies, hidden conditions or relevant subsets295

of the original data.

For any geochemical problem involving dissolution or precipitation of minerals, each mineral’s saturation ratio (SR) or

its logarithm SI (Saturation Index) discriminates the direction of the reaction. If SR > 1 (and thus SI > 0) the mineral is

oversaturated and precipitates; it is undersaturated and dissolves if SR < 1 (SI < 0); SR = 1 (SI = 0) implies local thermodynamic

equilibrium. Writing the reaction of calcite dissolution:300

calcite + H+→ Ca+2 + HCO−3 (5)

The Law of Mass Action (LMA) relates, at equilibrium, the activities of the species present in the equation. We conventionally

indicate activity with square brackets. For eq. 5, the LMA reads:

Keq
Cc =

[
Ca+2

]
eq
· [HCO−3 ]eq

[H+]eq

=
Ca+2

eq ·HCO−3 eq

[H+]eq
· γCa+2γHCO−3

(6)305

where γ stands for the activity coefficient of subscripted aqueous species. The solubility product Keq
Cc at equilibrium, tabulated

in thermodynamic databases, is a function of temperature and pressure and defines the saturation ratio:

SRCc =
1

Keq
Cc

Ca+2 ·HCO−3
[H+]

· γCa+2γHCO−3
(7)

The estimation of the saturation ratio of equation 7 using the elemental concentrations available in our training data is the

first, natural feature engineering tentative. Hereby, a few assumptions must be made.310

Using total elemental concentrations as proxy for species activities implies neglecting the actual speciation to estimate the

ion activity products, but also the difference between concentration and activity - “true” activity [H+] is known from the pH -,
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but also not relying on. For the chemical problem at hand, as it will be shown, it is a viable approximation, but it will not be

in presence of strong gradients of ionic strength or in general for more complex or concentrated systems. An exception to this

simplification is required for dissolved carbon due to the well known buffer. In this case, given that the whole model is at pH315

between 7 to 10, we may assume that two single species dominate the dissolved carbon speciation: CO−2
3 and HCO−3 . The

relationship between the activities of those two species is always kept at equilibrium in the PHREEQC models and thus, up

to the “perturbation” due to transport, also in our dataset. This relationship is expressed by the reaction and the corresponding

law of mass action written in eq. 8:

HCO−3 → CO−2
3 + H+ =⇒ Keq

carb =
CO−2

3 · [H+]
HCO−3

(8)320

The closure equation, expressing the approximation of total carbon concentration as the sum of two species, gives us the second

equation for the two unknowns:

C = HCO−3 + CO−2
3 (9)

Combining eq. 8 and 9 we get the estimation of dissolved bicarbonate (the wide tilde indicates that it is an estimation) from

the variables total carbon and pH comprised in our dataset and an externally calculated thermodynamic constant:325

H̃CO3 :=
C · [H+]

Keq
carb + [H+]

(10)

Now we can approximate the theoretical calcite saturation ratio S̃R
theor

Cc with the formula:

S̃R
theor

Cc :=
Ca · H̃CO3

[H+] ·Keq
Cc

=
Ca ·C

Keq
Cc(Keq

carb + [H+])
(11)

The two thermodynamic quantities (at 25 °C and atmospheric pressure) Keq
carb = 10−10.3288 and Keq

Cc = 10−2.00135 were com-

puted with the CHNOSZ package for the R environment (Dick, 2019), but may also be derived with simple algebraic calculations330

from, i.e., the same PHREEQC database employed in the reactive transport simulations.

Do these two newly defined variables, or “engineered features”, bicarbonate and calcite saturation ratio, actually help to

better understand and characterize our dataset? This can be simply assessed by plotting the ∆calcite against the logarithm of

S̃R
theor

Cc , which is the S̃I
theor

Cc (Figure 5a, leftmost panel, dataset from the reference simulations on grid 200, which will be used

from now on to illustrate the analysis since it contains enough data points) in the data. While many points remarkably lie on335

a smooth curve (colored in black), many others are scattered throughout the graph (in red). It is easy to observe that those red

points are either on the trivial ∆calcite=0 line, implying that calcite is undersaturated but not present in the system so nothing

happens, or else the reaction did not reach the amount which could have been expected based on its initial undersaturation

simply because calcite has been completely depleted during the timestep. All the red points correspond in facts to simulations

with calcite=0 in the labels (results) dataset. The retained black points, however, belong to timesteps where the dissolution of340

calcite is limited by kinetics and not by its initial amount, and can be thus used to estimate the reaction rate.
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Figure 5a also displays a problem with the defined S̃R
theor

Cc : its relationship is not bijective with the ∆calcite. This means

that we should proceed now to split the data in two different regions above and under the cusp (signalled by the blue horizontal

line). However, just simply dropping the denominator of equation11 solves this problem to a large extent:

S̃RCc := Ca ·C (12)345

The center panel of Figure 5b shows the scatter plot of ∆calcite versus the simplified S̃ICc. All points lie now on a smooth

curve, and the relation between the two variables is indeed quite perfectly bijective, with the exception of points very close

to the ∆calcite=0 line, where they are more scattered; but since those points also correspond to the smallest amounts of

reactions, we can deem this as successful approximation. Note that dropping the denominator in the definition of S̃RCc also

means that this feature does not reach one at equilibrium (and S̃ICc zero), which is clear observing the range of the x-axis in350

panels a and b of Figure 5. This has however no practical consequence for this problem: calcite is always undersaturated or

at equilibrium in the benchmark, and we just defined a simple feature which is in bijective relationship with the amount of

“true” dissolution in the data. While it could be possible to derive an analytical functional dependency between the observed

amount of dissolved calcite and the estimated S̃ICc, for example manipulating the kinetic law, we opted to use a regressor

instead. The good bijectivity between the two variables means that we should be able to regress the first using only the second.355

In the rightmost panel of Figure 5c are plotted in blue the in sample predictions of a Multivariate Adaptive Regression Spline

model (MARS) (Friedman, 1991, 1993), computed through the earth R package (Milborrow, 2018), based only on S̃ICc.

The accuracy is already acceptable indeed; however including further predictors from the already available features, in this

case pH, Ca and Mg, a better regression (in red) is achieved, improving the RMSE of more than factor two.
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Figure 5. (a) Scatter plot of ∆calcite vs estimated S̃I
theor

Cc . The datapoints in red cannot be used to estimate the reaction rate from the dataset

since calcite is depleted within the simulation time step. Furthermore, the retained points are not in bijective relationship with the ∆calcite,

with the blue horizontal line separating two regions where bijectivity is given. (b) ∆calcite versus the simplified S̃ICc: bijectivity is achieved.

(c) A MARS regressor is computed for the retained data points, based solely on the estimated S̃ICc (in blue) and using also other predictors

to ameliorate the multivariate regression.

Before moving forward, two considerations are important. First, the red points of Figure 5a should not be used when trying360

to estimate the rate of calcite dissolution, since they result from a steep and “hidden” non-linearity or discontinuity in the
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underlying model. This is a typical example of data potentially leading to overfitting in a machine-learning sense. Secondly,

this “filter” does not need to be applied at runtime during coupled reactive tansport simulations: it suffices to estimate correctly

the reaction rate given the initial state and then ensure that calcite does not reach negative values.

More interesting and more demanding is the case of dolomite, which firstly precipitates and then re-dissolves in the bench-365

mark simulations. In a completely analogous manner as above we define its saturation ratio S̃RDol as:

S̃RDol =
Mg ·Ca ·C2

[H+]2 ·Keq
Dol

(13)

thus using the total elemental dissolved concentration of C and with Keq
Dol = 103.647 resulting from the reaction:

CaMg(CO3)2 + 2H+→ Ca+2 + Mg+2 + 2HCO−3 (14)

The theoretical value of Keq
Dol = 103.647 used for calculation of S̃IDol does not discriminate the initially undersaturated from the370

oversaturated samples (dashed vertical black line in Figure 6). The “offset” which would serve us for a correct discrimination is

nothing else than the maximum value of S̃RDol restricted to the the region where ∆dolomite≤ 0. We correspondingly update

the definition of S̃RDol:

S̃RDol =
Mg ·Ca ·C2

[H+]2 ·Keq
Dol

−max(S̃RDol|∆dolomite≤0) (15)

Now we are guaranteed that the vertical line S̃RDol=1 (or equivalently, S̃IDol=0, plotted with a dashed blue line in Figure 6)

SIDol

-20 -15 -10 -5 0

-5.0 ⋅ 10−6

0

5.0 ⋅ 10−6

1.0 ⋅ 10−5

1.5 ⋅ 10−5

2.0 ⋅ 10−5

2.5 ⋅ 10−5

Δ
D

ol
om

ite

Dolomite, original data (grid 200)

SIDol = 0
Offset (0.54521)

Figure 6. Scatter plot of ∆dolomite vs estimated S̃IDol. The theoretical S̃IDol=0 does not discriminate the initially undersaturated from the

oversaturated samples (dashed vertical black line), and must be corrected with an apparent offset (blue dashed line). The plot identifies three

distinct regions in parameter space: initially supersaturated and precipitating dolomite (top right, green shading); initially undersaturated

and dissolving (bottom left, blue shading); and points where dolomite is initially undersaturated but ends up precipitating (top left, orange

shading).
375

divides correctly the parameter space in four distinct quadrants. Note that this offset emerges from the actual considered data,
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and depends on the perturbation of the concentrations due to transport and thus, in our simple advective scheme, on the grid

resolution through the time step. It follows that a different offset is expected for the other grids, and a different learning for

each grid is necessary.

The green shaded, top right quadrant points to dolomite precipitation in initially supersaturated samples; the bottom left,380

blue shaded contains solutions initially undersaturated w.r.t. dolomite and, if present, dissolving; the top left, orange shaded

quadrant is the most problematic: dolomite is initially undersaturated but, presumably due to the concurring dissolution of

calcite, it becomes supersaturated during the time step and hence precipitates.

First of all, we note that the initial presence of calcite is a perfect proxy for S̃IDol. If calcite is initially present in points

reached by the reactive magnesium chloride solution, then dolomite precipitates. When calcite is completely depleted, then385

dolomite starts dissolving again. The dissolution of dolomite in absence of calcite follows the same logic as the dissolution

of calcite above: a few points are scattered inbetween the line ∆dolomite=0 and the envelope of points lying on a well

defined curve. These scattered points are again those where dolomite is depleted within the time step, so they are excluded. For

the remaining points, an xgboost regressor based on the predictors S̃IDol, pH, C, Cl, Mg and dolomite achieves an excellent

accuracy (Figure 7) in reproducing the observed ∆dolomite. The top right quadrant of Figure 6, corresponding to the case of
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Figure 7. Regression of ∆dolomite vs estimated S̃IDol for the cases where no calcite is initially present. The multivariate regressor makes

use of the predictors S̃RDol, pH, C, Cl, Mg and dolomite.

390

dolomite precipitating while calcite is dissolving, cannot be explained based only on the estimated S̃IDol since their relationship

is not surjective (Figure 8a). Here again we can use a piece of domain knowledge to engineer a new feature to move forward.

The Mg/Ca ratio is often used to study the thermodynamics of dissolution of calcite and precipitation of dolomite (Möller and

De Lucia, 2020). Effectively, the occurring overall reaction which transforms calcite into dolomite reads:

2CaCO3 + Mg+2→ CaMg(CO3)2 + Ca+2 (16)395
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Figure 8. Precipitation of dolomite in presence of calcite. (a) the relationship between ∆dolomite and its saturation ratio is not surjective.

(b) The Mg/Ca ratio perfectly discriminates two distinct regions in parameter space.

By applying the law of mass action to reaction 16, it is apparent that its equilibrium constant is a function of the Mg/Ca

ratio (of its inverse in the form of equation 16). Plotting the ∆dolomite versus the initial Mg/Ca ratio, a particular ratio of

7.345 discriminates between two distinct regions for this reaction. Incidentally, this splitting value corresponds to the highest

observed S̃RDol in the training data; again, as previously noted for the offset on the estimated saturation index, this numerical

value depends on the considered grid and time step. On the left hand region we observe a smooth, quasi-linear dependency400

of the amount of precipitated dolomite on initial Mg/Ca. This is a simple bijective relationship where we can apply a simple

monovariate regression. The amount of precipitated dolomite is accurately predicted by a MARS regressor using the sole

Mg/Ca as predictor.

The region on the right of the splitting ratio can be best understood considering the fact that the precipitation of dolomite is

limited, in this region, by a concurrent amount of calcite dissolution. The full physics chemical solver finds iteratively the cor-405

rect amounts of calcite dissolution and dolomite precipitation while honoring both the kinetic laws and all the other conditions

for a geochemical DAE system (mass action equations, electroneutrality, positive concentrations, activity coefficients, . . . ). We

cannot reproduce such articulate and “interdependent” behavior without knowing the actual amount of dissolved calcite: we

are forced here to employ the previously estimated ∆calcite as a “new feature” to estimate of the amount of dolomite precip-

itation, albeit limited to this particular region of the parameter space. A surprisingly simple expression, fortunately, captures410

this relationship quite accurately (Figure 9). This implies of course that during coupled simulations first the ∆calcite must be

computed, and relying on this value, the ∆dolomite can be further estimated.

The last parameter space region which is left to consider is the orange-shaded, topleft quadrant of Figure 6. Here, although

dolomite is undersaturated at the beginning of the time step, it still precipitates in the end, following the concurrent dissolution

of calcite which changes its saturation state. Since however we already calculated the ∆calcite, we can update the concen-415

trations of dissolved Ca and C of corresponding amounts. One of these two concentrations, together with that of Mg, will

constitute a limiting factor for the precipitation of dolomite. Hence, plotting the ∆dolomite against the minimum value of

these three concentrations at each point (C must be divided by two for the stoichiometry of dolomite), we obtain a piecewise-
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Regression of Dolomite when Mg/Ca > 7.345
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Figure 9. Regression of ∆dolomite in the right hand region of Figure 8b.

linear relationship with limited non-linear effects. A very simple regression is hence sufficient to capture the bulk of the “true

model behavior” for all these data points (Figure 10). Now the behavior of calcite and dolomite is fully understood and we dis-
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Figure 10. Piecewise-linear regression for the orange-shaded, top left quadrant of figure 6 based on the limiting elemental concentration after

having considered calcite dissolution.

420

pose of a surrogate for both of them. Among the remaining output variables, only pH needs to be regressed: Cl is non-reactive,

meaning that the surrogate is the identity function. For pH, while it could be possible to derive a simplified regression informed

with geochemical knowledge, we chose for simplicity to use the xgboost regressor.

Summarizing, we effectively designed a decision tree, based on domain knowledge, which enabled us to make sense of the

“true” data, to perform physically meaningful feature engineering and ultimatively to define a surrogate model “translated” to425

the data domain (Figure 11). The training of this decision tree surrogate consists merely in computing the engineered features,
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1. ∆Calcite

earth{S̃ICc,Ca,Mg, pH}

3. pH

xgboost{all inputs}

S̃IDol > 0?

Mg/Ca >Split?

lm{log(Mg/Ca)}
∆Cc

earth{Mg/Ca}

Calcite=0?

xgboost{S̃IDol, pH,C,Cl,Mg,Dolomite}

∆Cc < 0

pwl{min(C/2,Ca,Mg)}

2. ∆Dolomite

yes

ye
s

no

no

yes
no

yes

Figure 11. Decision tree for the surrogate based on physical interpretation of the training dataset. The engineered features are used as splits

and as predictors for different regressions depending on the region of parameter space. The abbreviations “lm” and “pwl” stand respectively

for “linear model” and for piecewise-linear regression.

finding the apparent offset for the S̃IDol, the split value for the Mg/Ca ratio, and performing six distinct regressions on data

subsets, of which three are monovariate and two use less predictors than the corresponding completely data-driven counterpart.

All of them, excluding pH, only use a subset of the original training dataset. On our workstation, this operation takes few

seconds. The resulting surrogate is valid for the ∆t of the corresponding training data.430

To evaluate the performance of this surrogate approach, a decision tree is trained separately for each grid (and hence ∆t)

using the reference timesteps until 42000 seconds, whereas the coupled simulations are prolonged to 60000 s, so that at least

30 % of the simulation time is computed on unseen geochemical data.

The top panel of Figure 12 shows the results of the coupled simulation for grid 50 using the surrogate trained on the same

data, at the end of the iterations used for training. Discrepancies with respect to the reference full physics simulation are already435

evident. The problem here is that the training dataset is too small and the time step too large for the decision tree surrogate

to be accurate. However, nothing forbids to perform “inner iterations” for the chemistry using a surrogate trained on a finer

grid, which directly corresponds to smaller ∆t. For grid 50 (∆t=1066 s) we can hence use the surrogate trained on grid 500

(∆t=106.6 s) just calling it 10 times within each coupling iterations. The bottom panel of Figure 12 displays the corresponding
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results. The same problem affects the grid 100, which also requires the surrogate trained on grid 500, reiterated 5 times in this

Grid 50

Reference
Surrogate

a

Grid 50 - surrogate from Grid 500

Ca
Mg
C
Calcite
Dolomite
pH

b

Figure 12. Comparison of variables profiles for coupled simulations using the decision tree approach versus the references, at the end of the

timesteps used for training for grid 50 (41 coupled iterations). (a) decision tree trained on the data from reference grid 50 (∆t=1066 s). (b)

surrogate simulations using decision tree trained on grid 500 (∆t=106.6 s), repeated 10 times for each coupling time step.

440

case. The grids 200 and 500 are fine with the own reference data, as can be seen in Figure 13, this time displaying the end of

simulation time at 60000 s.

Grid 100 - surrogate from Grid 500

Reference
Surrogate

Grid 200

Ca
Mg
C

Calcite
Dolomite
pH

Grid 500

Figure 13. Variable profiles after 60000 s (simulation time) for grids 100, 200 and 500.

20

https://doi.org/10.5194/gmd-2020-445
Preprint. Discussion started: 2 March 2021
c© Author(s) 2021. CC BY 4.0 License.



In Figure 14 are summarised the errors of the surrogates simulations (top panel) and the overall pseudo speedup after 60000 s

(bottom panel). While inaccuracies are indeed introduced in the coupled simulations by the decision tree surrogate, crossing

the “out of sample” boundary does not provoque a steep increase in error. Even if the overall error is slightly larger than the445

corresponding purely data-driven simulations with 10−6 tolerance, the physics-based approach has the major advantage of

being much more robust when encountering unseen data. Moreover, since no calls to PHREEQC are issued at all during these

simulations, the performance of the coupled simulations is not going to degrade during the simulation time. The physics-based

surrogates achieve large pseudo speedups, starting with 2.7 for the grid 50 and reaching 6.8 for the 500 grid (Figure 14, bottom

panel).450
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Figure 14. Top: errors of surrogate simulations w.r.t. references. Bottom: overall pseudo speedup after 60000 s.

Note that the decision tree approach has been implemented in pure high-level R language (up to the calls to the regressors

xgboost and earth, which are implemented in low-level languages such as C/C++) and is not optimized. A better imple-

mentation would further improve its performance, especially in the case where repeated calls to the surrogate are performed at

each coupled iteration.

5 Discussion and future work455

The results presented in this work devise some strategies which can be successfully exploited to speedup reactive transport

simulations. The simplifications concerning the transport and the coupling itself (stationary flow; pure advection with dispersive

full explicit forward Euler scheme; no feedback of chemistry on porosity and permeability; initially homogeneous medium;
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kinetic rate not depending on reactive surfaces) are obviously severe, but most of them should only marginally affect the

validity of the benchmarks concerning the achievable speedup of geochemistry in a broad class of problems.460

A fully data-driven approach, combined with a hierarchical coupling in which full physics simulations are performed only if

surrogate predictions are found implausible, is feasible and promises significant speedups for large scale problems. The main

advantage of this approach is that the same “code infrastructure” can be used to replace any physical process, not limited

to geochemistry: it is completely general, and it could be implemented in any multiphysics toolbox to be used for any co-

simulated process. The hierarchy of models for process co-simulation is a vast research field on itself. This idea has to our465

knowledge never been implemented specifically for reactive transport, but has been proposed, e.g., for particular problem

settings in fluid dynamics and elastomechanics (Altmann, 2013; Altmann and Heiland, 2015) and in the broader context of

theoretical model reduction and error control (Domschke et al., 2011). This is however a fertile interdisciplinary research task

and it is not difficult to foresee that significant progress in this area will soon be required to facilitate and fully leverage the

powerful machine learning algorithms already available, in order to speedup any complex, multiscale numerical simulations.470

The coupling hierarchy implemented in this work is obviously extremely simple and cannot be directly compared with the

above cited works, since it is merely based on a posteriori evaluation of plausibility of geochemical simulations. Furthermore, it

exploits redundant regressions, which is suboptimal, albeit practical: in effects, regressing more variables than strictly necessary

is not much different than regressing the true independent variables and their error models. Since the surrogate predictions are

so cheap compared to the full physics, it would be only slightly beneficial to first interrogate the error model and then go475

directly to the full physics instead of computing at once the whole surrogate predictions and check it afterwards. Nevertheless,

several improvements can be implemented with respect to the hierarchy presented in this work. The first would be to add charge

balance to the error check at runtime. For different classes of chemical processes, other criteria may be required. For example

check on mass action laws can be implemented for models requiring explicit speciation, like in the simulations of radionuclide

diffusion and sorption in storage formations. Another one would be to actually eliminate one or more redundant regression480

and base the error check on the accordance between the overlapping one. As an example, one could regress the ∆dolomite,

∆calcite and ∆Ca, limiting in practice the mass balance check to one element.

In our opinion there is no point in discussing if there is one most suitable or most efficient regression algorithm. This largely

depends on the problem at hand and on the skills of the modeller. While we rather focused on gradient boosting decision-tree

regressors for the reasons briefly discussed in section 3, a consistent number of authors successfully applied artificial neural485

networks to a variety of geochemical problems and coupled simulations (Laloy and Jacques, 2019; Guérillot and Bruyelle,

2020; Prasianakis et al., 2020). We would like to point out that transforming geochemistry - as any other process - in a

pure machine learning problem requires on one hand skills that are usually difficult for the geoscientists to acquire, and on

the other it fatally overlooks domain knowledge that can be used to improve at least the learning task, which will directly

result in accurate and robust predictions, as we demonstrated in section 4. Feature engineering based on known physical490

relationships and equations should be part of any machine learning workflow anyway; building experience in this matter,

devising suitable strategies for a broad class of geochemical problems is in our opinion much more profitable than trying

to tune overly complex “black box” models of general applicability. The purely data-driven approach has its own rights and
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applications. As already noted, it is a completely process-agnostic approach which can be implemented in any simulator for

any process. However, in absence of physical knowledge within the surrogate, the training data must cover beforehand all the495

processes and the scenarios happening in the coupled simulations. On-demand training and successive incremental update of

the surrogates at runtime during the coupled simulations would mitigate this issue. This would require a careful choice of

the regressors, since not all of them have this capability, and possibly a sophisticated load balance distribution, likely viable

only in the context of parallel computing. In perspective, however, this is a feature that in our opinion should be implemented

in the numerical simulators. A second issue, related to the first, is that a data-driven surrogate trained on a specific chemical500

problem (intending here initial conditions, concentration of the injected solutions, mineral abundances, time steps...), is not

automatically transferable to different problem settings, even when for example only a single kinetic constant is varied. Again,

shaping the surrogate following the physical process to be simulated seem here the most straightforward way to overcome this

issue, at least partially. One would dispose of partial regressions in specific parameter space regions which could be varied

following changes in underlying parameters.505

It remains to be assessed if it is possible to generalize and automate the physics-based surrogate approach devised in sec-

tion 4 on geochemical problems of higher complexity, i.e., with many minerals reacting. No claim of optimality is made about

the actual choice of engineered features we made for this chemical benchmark: different features could possibly explain the

data even more simply, and thus the chemical process. The important part is the principle: identify relationships as bijective

as possible between input and output parameters, compartimentalized in separated regions of parameter space, using features510

derived by the governing equations. An automation of feature engineering based on stoichiometry of the minerals is a straight-

forward extension, since it can be achieved by simply parsing the thermodynamic databases. An automatic application of the

approach starting with a large number of engineered features may originate forests of trees much like the well known random

forest or gradient boosting algorithms, but specialised in geochemical models: a true hybrid physics-AI model.

Also, the regressors which constitute the leaves of the decision tree of Figure 11 are completely arbitrary and were selected515

based on our own experience. A more in-depth breakdown of the relationships between variables, for example analytical

expressions derived directly from the kinetic law, could reduce most or all regressions to simple statistical linear models, which

would even further increase the interpretability of the surrogate.

6 Conclusions

Employing surrogates to replace computationally intensive geochemical calculations is a viable strategy to speedup reactive520

transport simulations. A hierarchical coupling of geochemical sub-processes, allowing to recur to “full physics” simulations

when surrogate predictions are not accurate enough is advantageous to mitigate the inevitable inaccuracies introduced by the

approximated surrogate solutions. In the case of purely data-driven surrogates, which are a completely general approach not

limited to geochemistry, regressors operate exclusively on input/output data oblivious to known relationships. Here, redundant

information content can be employed effectively to obtain cheap estimation of plausibility of surrogate predictions at runtime,525

by checking the errors on mass balance. This estimation works well at least for the presented geochemical benchmark. Our
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tests show consistent advantage of decision-tree based regression algorithms, especially belonging to the gradient boosting

family.

Feature engineering based on domain knowledge, i.e., the actual governing equations for the chemical problem as solved by

the full physics simulator, can be used to construct a surrogate approach in which the learning task is enormously reduced. The530

strategy consists in partitioning the parameter space based on the engineered features, and looking for bijective relationships

within each region. This approach reduces both the required multivariate predictions and the dimension of training dataset

upon which each regressor must operate. Algorithmically it can be represented by a decision tree, and proved both accurate

and robust, being equipped to handle unseen data and less sensible to sparse training dataset, since it embeds and exploits

knowledge about the modelled process. Further research is required in order to generalize it and to automate it for more535

complex chemical problems, as well as for adapting it to specific needs such as sensitivity and uncertainty analysis.

Both approaches constitute non-mutually-exclusive valid strategies in the arsenal of modellers dealing with overwhelmingly

CPU-expensive reactive transport simulations, required by present day challenges in subsurface utilisation. In particular, we

are persuaded that hybrid AI-physics models will offer the decisive computational advantage needed to overcome current

limitations of classical equation-based numerical modelling.540
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